Acta Cryst. (1965). 18, 294

The crystal structure of the high temperature form of PuGa₃.* By Allen C. LARSON, DON T. CROMER and R. B. ROOF, Jr., University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S.A.

(Received 20 August 1964)

A phase diagram of the plutonium-gallium system was recently reported by Ellinger, Land & Struebing (1964). Among the compounds listed is $PuGa_3$, which exists in both a high temperature and a low temperature form. The low temperature form has the Ni₃Sn structure type, a close packed hexagonal structure with layering *abab*---. The high temperature form (metastable at room temperature) is the subject of the present note.

A specimen was prepared by arc melting and slowly cooling a stoichiometric mixture of Pu and Ga. The high temperature phase (designated μ' by Ellinger *et al.*, 1964) is readily preserved to room temperature, even if the alloy is slowly cooled.

The alloy was crushed and selected fragments were examined with a precession camera and with a singlecrystal orienter on a General Electric XRD 5 diffracto-

* Work performed under the auspices of the U.S. Atomic Energy Commission.

meter. All fragments were found to be twinned rhombohedral crystals, with each twin making up about half of any fragment. Photomicrographs taken with polarized light showed faint striations typical of twin boundaries. The single-crystal regions were about 5 to 10 microns wide. In a typical fragment of 50 to 100 microns in size there might be 5 to 10 fragments of each twin, thus accounting for the fact that the two orientations were always present in nearly equal amounts. The lattice constants, measured on a carefully aligned single crystal orienter, were found to be $a = 6.178 \pm 0.001$ and c = 28.031 ± 0.004 Å (λ , Mo $K\alpha_1 = 0.70926$ Å). The primitive rhombohedral cell has constants a = 10.001 Å and $\alpha = 35^{\circ} 59'$. The measured density of the ingot was 9.3 g.cm⁻³ at room temperature. The calculated density, with 12 formula units per unit cell, is 9.63 g.cm^{-3} .

Because of the similarity between the unit cells of PuGa₃ and PuAl₃ (Larson, Cromer & Stambaugh, 1957; $a_{PuGa_3} \simeq a_{PuAl_3}$ and $c_{PuGa_3} \simeq 2c_{PuAl_3}$) it seemed probable

 Table 1. Final least-squares parameters (hexagonal unit cell)

Atom	\mathbf{Set}	\boldsymbol{x}	z	$B_{11} \times 10^5$	B_{22}	$B_{33} \times 10^6$	$B_{12} \times 10^5$	$B_{13} \times 10^{6}$	B_{23}
Pu(1) Pu(2) Ga(1) Ga(2)	$6(c) \\ 6(c) \\ 18(h) \\ 18(h)$	$0 \\ 0 \\ 0 \cdot 4791 \pm 3 \\ 0 \cdot 5011 \pm 4$	$\begin{array}{c} 0.12977 \pm 8 \\ 0.28798 \pm 9 \\ 0.1247 \ \pm 1 \\ 0.2915 \ \pm 2 \end{array}$	$\begin{array}{c} 990 \pm 63 \\ 966 \pm 52 \\ 1284 \pm 113 \\ 1248 \pm 99 \end{array}$	$egin{array}{c} B_{11} \ B_{11} \ B_{11} \ B_{11} \ B_{11} \ B_{11} \end{array}$	$\begin{array}{c} 391 \pm 45 \\ 197 \pm 38 \\ 372 \pm 58 \\ 432 \pm 54 \end{array}$	$B_{11} \\ B_{11} \\ 1209 \pm 248 \\ 640 \pm 222$	$0 \\ 0 \\ 319 \pm 239 \\ 713 \pm 209$	$\begin{array}{c} 0 \\ 0 \\ -B_{13} \\ -B_{13} \end{array}$
$g = 4 \cdot 34 \pm 0.17 \times 10^{-8}$									

Table 2. Observed and calculated structure factors for PuGa₃

The column headings are l, $|F_0|/K$ and F_c^*/K (see text). A minus sign preceding $|F_0|/K$ means 'less than'

Н≭	0 K≠ 1	H≈ 0 K≖ 5	H≖ 1 K= 3	H= 2 K= 1	H= 3 K= 1	H= 4 K= 2
2	198 -208	1 157 161	1 102 103	10 160 160	20 143 -144	5 616 -596
5	466 -456	4 -93 -49	4 119 -127	13 149 -154	23 -98 17	8 147 153
8	180 187	7 168 159	7 462 463	16 -81 -19	26 248 -259	11 = 106 = 100
- 11	-72 -45	10 154 172	10 -82 17	19 324 +315	20 240 257	14 403 405
14	327 331	13 139 -132	13 104 -84	22 -92 9	H= 3 K= 2	17 430 410
17	204 201	16 -95 -26	16 -90 17	25 -105 92		1
20	170 -162	19 153 -160	19 401 -404	28 -103 101	1 -81 -24	H= 4 K= 3
23	-86 -16		22 - 108 83		4 -84 -53	
26	305 -313	H= 1 K= 0	25 - 100 53	H= 2 K= 3	7 449 439	1 -112 126
29	-98 -30				10 118 -101	4 -106 -63
32	118 113	1 -74 77	H= 1 K= 5	2 -84 -15	13 -88 24	7 164 179
		4 94 -103		5 346 - 350	16 -98 -30	
H÷	0 K= 2	7 594 572	2 192 -202	8 116 106	19 411 -397	H= 5 K= 0
		10 -79 -20	5 248 -248	11 -89 33	22 152 155	
1	358 · 358	13 -71 -51	8 153 159	14 123 123		2 327 -316
4	341 -350	16 -84 -39	11 -110 -114	17 190 185	H= 3 K= 4	5 -104 -102
7	1120 1133	19 489 -479	14 266 261	20 -104 -107		8-105 99
10	471 484	22 148 140		23 -100 -54	2 209 -229	11 146 -137
13	292 -293	25 -91 25	H= 2 K= 0		5 149 -133	14 398 379
16	170 159	28 -107 121		H= 2 K= 4	8 -107 100	17 -97 23
19	944 -955	31 316 317	2 691 -709			20 -110 -101
22	190 -205		5 1083-1075	1 -120 124	H= 4 K= 0	
25	190 188	H= 1 K= 2	8 423 414	4 130 -108		H= 5 K= 1
28	-96 -4		11 270 -280	7 650 649	1 224 218	
31	626 609	2 372 - 370	14 742 718	10 233 234	4 179 -189	1 -114 140
		5 273 -268	17 830 794	13 -116 -107	7 862 856	4 -108 -120
H=	0 K= 4	8 174 177	20 321 -330	16 -100 26	10 363 347	7 307 301
		11 156 -159	23 137 137		13 181 -184	10-104 91
2	508 -521	14 448 450	26 564 -555	H= 3 K= 1	16 -94 70	13 -110 -120
5	769 - 798	17 -94 104	29 412 -410		19 720 -704	16 -103 40
. 8	246 245	20 156 -161		2 159 -168	22 132 -149	
11	167 -177	23 -98 69	H= 2 K= 1	5 375 - 378	25 -116 124	
14	530 550	26 370 -391		8 190 186		
17	550 553	29 - 100 6	1 200 199	11 -87 -76	H= 4 K≃ 2	
20	194 -215		4 95 -104	14 274 263		
23	-102 90		7 368 360	17 204 201	2 362 -365	

that the $PuGa_3$ structure consisted of close-packed layers in a 12-layer stacking sequence. There is only one 12-layer rhombohedral sequence: *abacbcbacacb*.

Intensities were measured with a single-crystal orienter and an XRD 5 diffractometer with Mo $K\alpha$ radiation and balanced filters. The entire hemisphere of the obverse orientation was investigated for $2\theta < 50^{\circ}$. Approximate absorption corrections, based on the variation of intensity with φ at $\chi = 90^{\circ}$ and on the mean radius of the fragment, and LP corrections were applied using the program described by Larson, Cromer & Roof (1964). Equivalent reflections were averaged. The *R* index formed by comparing average values with individual values of equivalent reflections was $4\cdot 4\%$ based on *F* and $6\cdot8\%$ based on F^2 .

Both twin orientations contribute to reflections with l=3n. Reflections with l=3n are from the obverse twin only and subsequent refinement was made using only this class of reflections. In this class there were 104 non-equivalent reflections observed out of a possible 157.

The 12-layer rhombohedral close-packed structure belongs to space group $R\overline{3}m$. A trial structure based on this model was refined by least squares; the quantity minimized was $\Sigma w(F_o - F_c^*)^2$, where $w = w_E/(|F_o| + 0.02F_o^2)$, w_E is the weight based on counting statistics as described by Evans (1961), and

$$F_{c}^{*} = KF_{c} / \left\{ 1 + g \operatorname{LP} \left[\frac{2(1 + \cos^{4} 2\theta)}{(1 + \cos^{2} 2\theta)^{2}} \right] F_{c}^{2} \right\}^{\frac{1}{2}}$$

where K = scale factor, g = extinction parameter(Zachariasen, 1963), LP = Lorentz-polarization factor and

Table	3.	Interatomic	distances	in	PuGa,
-------	----	-------------	-----------	----	-------

Pu(1)-3 Ga(1) -6 Ga(1) -3 Ga(2)	$\begin{array}{c} 2 \cdot 987 \pm 4 \ \text{\AA} \\ 3 \cdot 101 \pm 1 \\ 3 \cdot 037 \pm 5 \end{array}$
Pu(2)-3 Ga(1) -3 Ga(2) -6 Ga(2)	$2 \cdot 996 \pm 4$ $3 \cdot 033 \pm 4$ $3 \cdot 092 \pm 1$
$\begin{array}{l} {\rm Ga(1)-Pu(1)}\\ {\rm -2\ Pu(1)}\\ {\rm -Pu(2)}\\ {\rm -2\ Ga(1)}\\ {\rm -2\ Ga(1)}\\ {\rm -2\ Ga(1)}\\ {\rm -2\ Ga(2)} \end{array}$	$\begin{array}{c} 2 \cdot 987 \pm 4 \\ 3 \cdot 101 \pm 1 \\ 2 \cdot 996 \pm 4 \\ 2 \cdot 703 \pm 6 \\ 2 \cdot 825 \pm 6 \\ 3 \cdot 477 \pm 6 \\ 2 \cdot 874 \pm 5 \end{array}$
$\begin{array}{c} {\rm Ga(2){\rm -Pu}(1)} \\ {\rm -Pu}(2) \\ {\rm -2} \ {\rm Pu}(2) \\ {\rm -2} \ {\rm Ga}(1) \\ {\rm -2} \ {\rm Ga}(2) \\ {\rm -2} \ {\rm Ga}(2) \\ {\rm -2} \ {\rm Ga}(2) \end{array}$	3.037 ± 5 3.033 ± 4 3.092 ± 1 2.874 ± 5 2.938 ± 7 3.069 ± 7 3.111 + 7

Table 4. Thermal vibration ellipsoids in PuGa₃

A +	A	r.m.s.	Angle crysta	Angles relative to the crystallographic axes				
Atom	AXIS i	Amplitude	α	p	γ			
Pu(1)	1	0.120 ± 5 Å	0	120	90			
	2	0.120 ± 5	90	30	90			
	3	0.125 ± 7	90	90	0			
Pu(2)	1	0.118 ± 8	0	120	90			
	2	0.118 ± 8	90	30	90			
	3	0.088 ± 9	90	90	0			
Ga(1)	1	0.144 ± 7	37 ± 8	143 ± 8	68 ± 14			
	2	0.135 ± 8	60	60	90			
	3	0.118 ± 10	109 ± 12	71 ± 12	22 ± 14			
Ga(2)	1	0.171 ± 6	38 ± 4	142 ± 4	66 ± 6			
	2	0.123 ± 8	60	60	90			
	3	0.122 ± 9	111 ± 5	69 ± 5	24 ± 6			

 F_c is the ordinary calculated structure factor. Anisotropic temperature factors in the form

$$\exp\left[-(h^2 B_{11} + k^2 B_{22} + l^2 B_{33} + hk B_{12} + hl B_{13} + kl B_{23})\right]$$

were used. At the end of the refinement, $\Delta \xi_i / \sigma(\xi_i)$ was $<5 \times 10^{-4}$ for all parameters ξ except g, for which it was 0.015. The final value of $R = \Sigma w |F_o - F_c^*| / \Sigma w F_o$ was 3.0% for the 104 non-zero reflections with $l \pm 3n$. The scattering factors used were those given by Cromer & Waber (1965), modified by the real anomalous dispersion terms calculated by Cromer (1965).

The final parameters are given in Table 1 and the corresponding values of F_o/K and F_c^*/K are given in Table 2. Interatomic distances are listed in Table 3. The vibrational tensors were diagonalized, with the results as shown in Table 4. The standard deviations in Tables 3 and 4 were computed using the entire variance-covariance matrix. Lattice parameter errors were also included in the standard deviations of Table 3.

All calculations were performed on an IBM 7094 computer with codes written by the authors.

We are indebted to V. O. Struebing for the preparation of the alloy.

References

- CROMER, D. T. (1965). Acta Cryst. 18, 17.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- ELLINGER, F. H., LAND, C. C. & STRUEBING, V. O. (1964). J. Nuclear Materials. 12, 226.
- EVANS, H. T. (1961). Acta Cryst. 14 989.
- LARSON, A. C., CROMER, D. T. & ROOF, R. B., JR. (1964). Los Alamos Scientific Laboratory Report, LA-3043.
- LARSON, A. C., CROMER, D. T. & STAMBAUGH, C. K. (1957). Acta Cryst. 10, 443.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139.